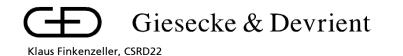
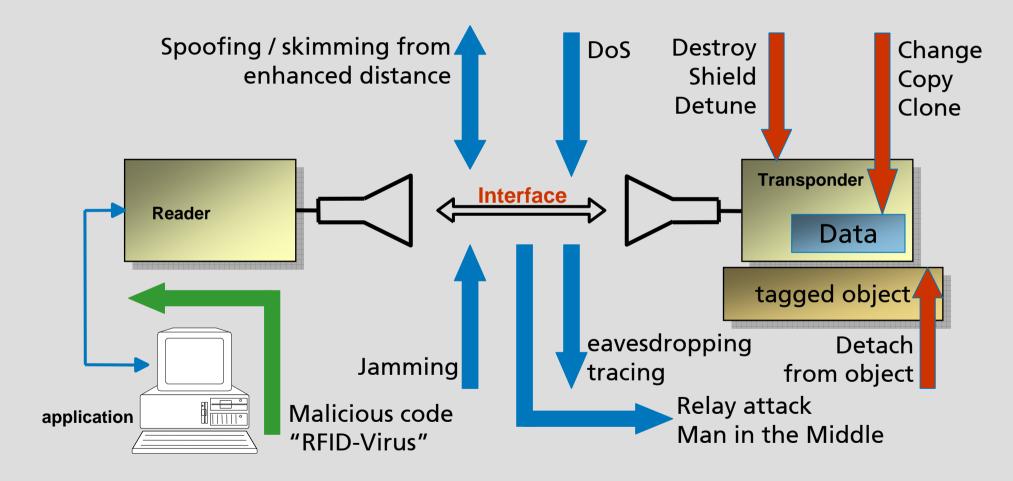
Known attacks on RFID systems, possible countermeasures and upcoming standardisation activities.

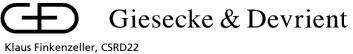
Klaus Finkenzeller 16.06.2009



Creating Confidence.

Attacks on RFID-Systems


- Part I: Attacks to destroy and disturb RFID-Systems
- Part II: Attacks to collect, copy and modify data
- Part III: Using a tag without physical access: relay attacks
- Possible countermeasurements
- Standardisation activities



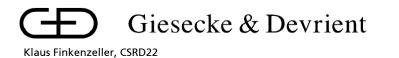
Seite 2, 16.06.2009

Possible attacks on RFID-Systems

Klaus Finkenzeller, CSRD2 Seite 3, 16.06.2009

Part I: Attacks to destroy and disturb RFID-Systems

Shielding:


Use of mechanical means to disrupt function

Jamming:

Use of an electronic device to disrupt function

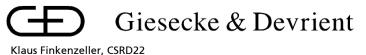
Physical or electronic destruction of the tag

Seite 4, 16.06.2009

Attacks physically targeting the transponder

Detuning or shielding the transponder

- Metal foil around the antenna
- Dielectrically detuning of UHF-antennas (reduce reading range)
- Only temporarily. Can also be used to protect transponder against unknown or unrequested read attempts

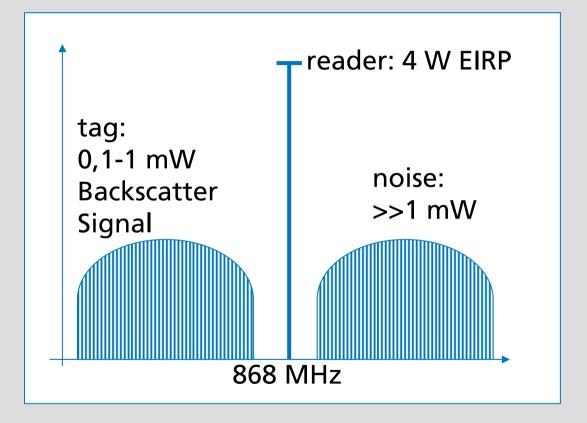

Permanently destroying the Transponder

- Mechanical demolition of the microchip
- Chemical demolition of the transponder
- Clipping microchip off the antenna
- Exposure to strong magnetic fields (e.g., microwave oven)

 \rightarrow Total lost of the transponder and probably of the stored data

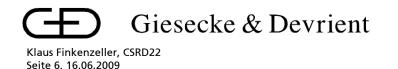
Klaus Finkenzeller, CSRD2 Seite 5, 16.06.2009

Attacks targeting the RF-Interface: Noise & Jamming


Jamming is the use of an electronic device to disrupt the readers function

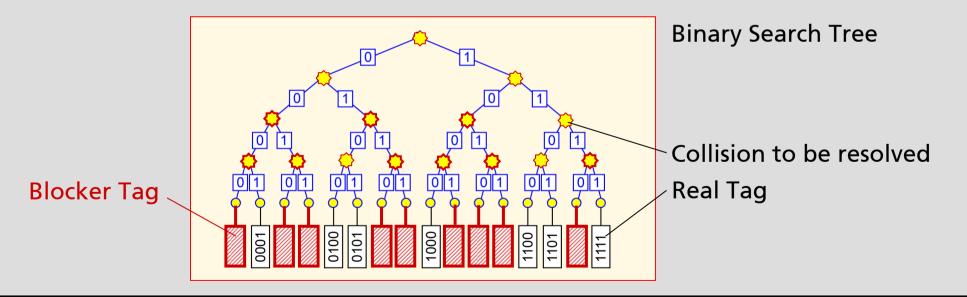
Jamming UHF (868 MHz)

- Jamming of sidebands
- Rough estimation of jamming range:
 60 mW 20 m
 250 mW 50 m
 1 W 100 m
- Short reading distance


Jamming RF (13.56 MHz)

- Jamming of subcarrier sidebands (ISO/IEC 14443: 13.56 MHz ± 848 kHz)
- At least 1m should be feasible (own measurements)

Requires large antennas and huge power to gain more distance

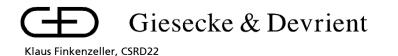


Attacks targeting the RF-Interface: Anti-collision

Denial of Service occurs when specially-designed tags are used to overwhelm a reader's capacity to differentiate tags

- Use anti-collision algorithms to fake an infinite number of tags
- Tree walking "blocker tag" can fake a collision at each bit of the UID
- 48 bit Unique ID + 1 ms to read an UID
 - \rightarrow 8925 years to read the whole number range of 2⁴⁸ UIDs
- "Blocker Tag" shown by RSA

Giesecke & Devrient


Klaus Finkenzeller, CSRD22 Seite 7. 16.06.2009

Countermeasures?

- No countermeasures known against jamming, blocking, shielding and physical destruction.
- RFID systems have to deal with the potential risk of loss of communication and / or loss of data resulting from the above listed attacks

Seite 8, 16.06.2009

Part II: Attacks to collect, copy and modify data

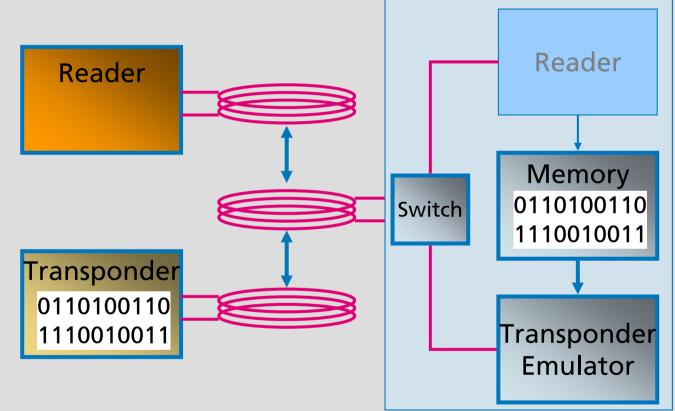
Spoofing:

Duplicating tag data and transmitting it to a reader.

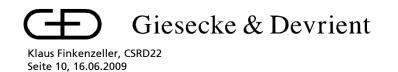
- Cloning: Duplicating data of one tag to another tag.
- Eavesdropping: Unauthorized listening / interception.
- Tracing/Tracking: Identify the parties that exchange messages (who, when, how often?). Possible attacks to location privacy.
- Skimming: Unauthorized access of reading of tag data.

Klaus Finkenzeller, CSRD22 Seite 9, 16.06.2009

Attacks targeting the Transponder Data: Spoofing

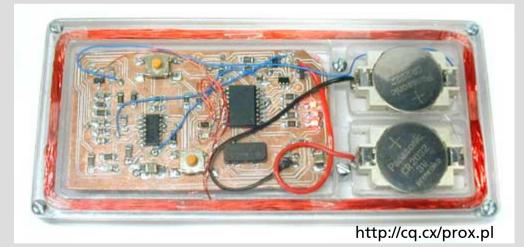

Spoofing is defined as duplicating tag data and transmitting it to a reader

Step 1

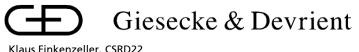

Read and store UID + memory data from transponder

Step 2

- Emulate transponder using UID + memory data
- Change memory data as you like



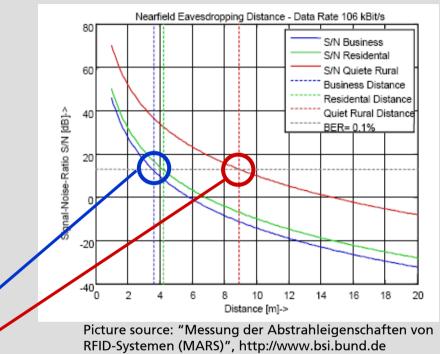
Attacks targeting the Transponder Data: Spoofing / Cloning


Spoofing (emulation and cloning) of a transponder

- Has been proved several times [Westhues 2003]
- All read-only and r/w-transponder (without encryption) are in danger
- Cannot be detected by the reader device

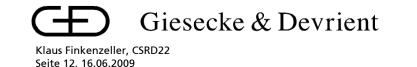
→ Risks: Identity theft, restoring one time tickets; using someones access card, ...

Klaus Finkenzeller, CSRD22 Seite 11, 16.06.2009


Attacks targeting Transponder Data: Eavesdropping 13,56 MHz

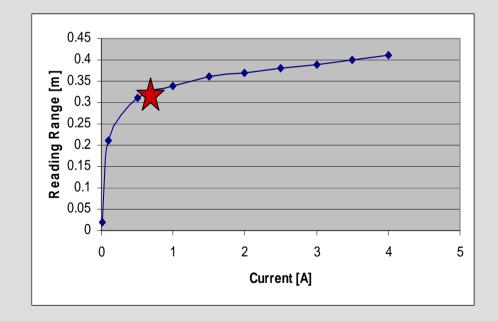
Eavesdropping: Unauthorized listening

- Collecting raw transmissions to determine protocols / encryption
- Determining traffic pattern
- Collecting the tag's data


Eavesdropping of uplink ISO 14443

- Detect Load Modulation Signal
- Several studies & successful attempts [BSI-MARS]
- Noisy Environment: 3 m
- Quiet Rural: 9 m

Eavesdropping of downlink (reader signal) ISO 14443 even may work from a few 10 up to a few 100 meter


Attacks targeting Transponder Data: Skimming 13,56 MHz

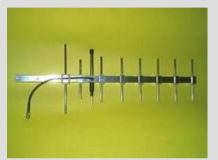
Skimming: Unauthorized access of reading of tag data

Limitations in increasing the reading distance of ISO 14443 [Kirschenbaum 2005]

- Additional power adds additional noise to the load modulation side bands
- Increasing the antenna diameter decreases the coupling factor

Practical limit for ISO/IEC 14443 is around 40 cm!

Property Method	Max Distance	Extra Cost (beyond NFC)	Availability	Attacker Knowledge
Standard	~10 cm	0\$	High	Low
Current + Antenna	~40 cm	<100 \$	High	Medium
Current + Antenna + Software	~50 cm	>100 \$	Medium	High
Current + Antenna + Hardware	~55 cm	>5000 \$	Low	Very High



Klaus Finkenzeller, CSRD22 Seite 13, 16.06.2009

Attacks targeting Transponder Data: Eavesdropping UHF 868 MHz

General issues

- Attacker may use directional antennas with 20 dB Gain and even more ("long yagi" or "grouped yagi" antenna)
- Eavesdropping distance strongly depends on "line of sight"

Antenna with 10 dBi

Eavesdropping of uplink UHF (transponder → reader)

- Typical backscatter power about 0,1 1 mW
- A rough estimation shows that a few 10 m should be no problem

Eavesdropping of downlink UHF (reader → transponder)

- Typical reader power 2 W ERP (according to ERC 70-03)
- A rough estimation shows that several 100 m should be no problem

Klaus Finkenzeller, CSRD22 Seite 14, 16.06.2009

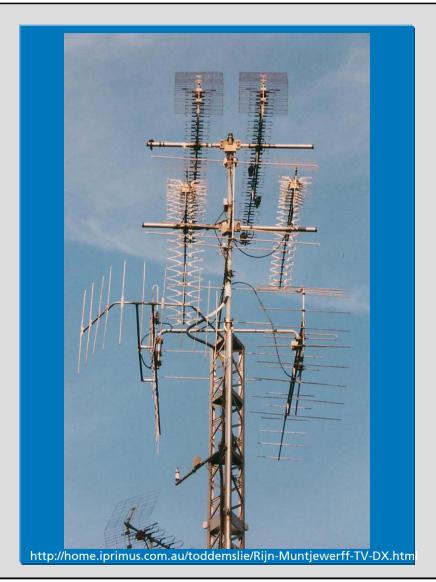
Attacks targeting the RF-Interface: Skimming UHF 868 MHz

Increase reading distance at UHF

- Increase power of reader?
 16 x power = 2 x distance!
 not feasible (adding noise)
- Increase antenna gain at reader?
 +6 dB = 2 x distance
 - ightarrow feasible with yagi antenna
- +20 dB = 10 x the distance
 proved by DEFCON [69 feet]
- +40 dB = 100 x the distance
 parabolic antenna with 15 m Diameter!

~ 40 dB antenna gain / 15 m arnothing

Bild: http://www.baesystems.com/ProductsServices/radio_telescope.html

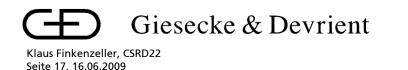


Klaus Finkenzeller, CSRD22 Seite 15, 16.06.2009

Attacks targeting the RF-Interface: Skimming @ 868 MHz

Increase reading distance at UHF

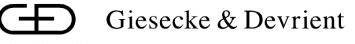
- Increase power of reader?
 16 x power = 2 x distance!
 not feasible (adding noise)
- Increase antenna gain at reader?
 +6 dB antenna gain = 2 x distance
 → feasible with yagi antenna
- +20 dB antenna gain = 10 times the distance
 - → proved by DEFCON [69 feet]
- +40 dB antenna gain = 100 times the distance
 - ➔ parabolic antenna with 15 m Diameter!
- Practical limit abt. 26 dB antenna gain = 20 times the distance
 huge antenna group


Klaus Finkenzeller, CSRD22 Seite 16, 16.06.2009

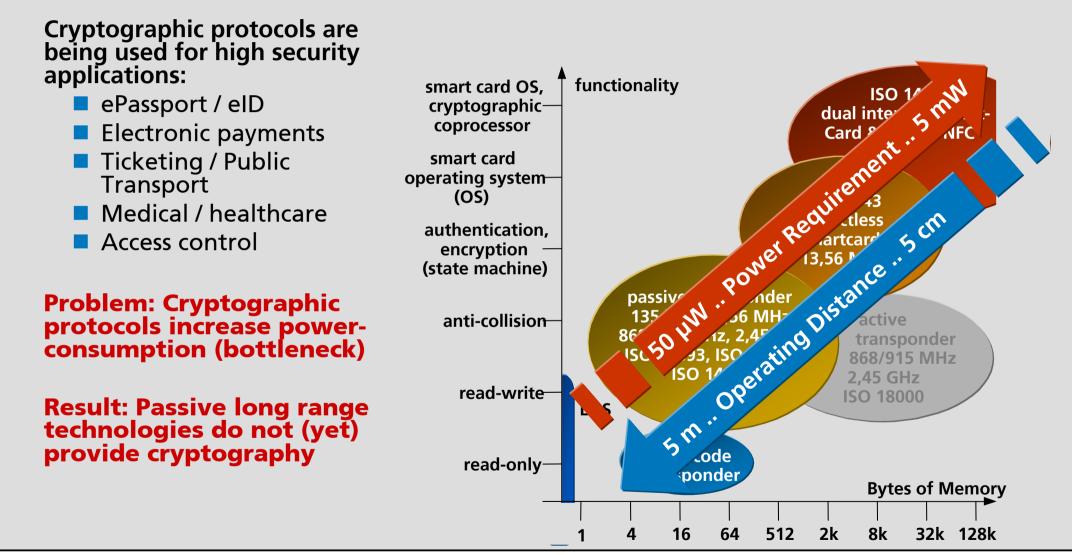
Countermeasures?

Yes! Cryptographic procedures protect against unauthorized eavesdropping, cloning, writing, modifying, reading (from distance)

- Mutual authentication between Tag and Reader
- Encryption of the data transfer between Tag and Reader
- Software countermeasures do exist (e.g., derived keys, use of session keys, periodical key updates)



Cryptographic security in contactless applications


	Cryptographic features	Threats
E-Passports (ICAO)	Passive authentication (stored data authenticity) Signature algorithms include RSA, DSA, ECDSA Optional security features: Active authentication (anti-cloning), BAC (confidentiality), keys have roughly 52 bits entropy, Secure Messaging (authenticating and encrypting passport-to-reader communications)	Tracking, hotlisting, scanning Passive eavesdropping Skimming Leakage of biometric data
MIFARE (NXB brand)	Security features: confidentiality of (proprietary) cryptographic algorithm, 48 bit keys, 16 bit random numbers (LFSR-based)	Stream cipher broken (CCC '07) attacks in minutes with limited material cost
EPC-C1G2 (ISO/IEC 18000-6C)	16-bit Pseudo-Random Number Generator, 16-bit Cyclic Redundancy Code Two 32-bit PINs: Kill and Access (uses Bitwise XOR with password); used to control memory lock states and tag kill operations Killing or discarding tags (enforces consumer privacy) No cryptographic primitives (hash functions, ciphers)	Cloning (EPC is copyable) EPC transmitted in plain text (-> Privacy, Tracking, Spoofing) PIN used in Access command can be disclosed (no real access control)
Secure UHF (ISO/IEC 18000-6)	Several research projects , proposals for new ciphers: Grain, Trivium, PRESENT-80 Products not yet available. Only HW implementations seem feasible.	new ciphers and algorithms => proofs outstanding => limited trust

Klaus Finkenzeller, CSRD22 Seite 18, 16.06.2009

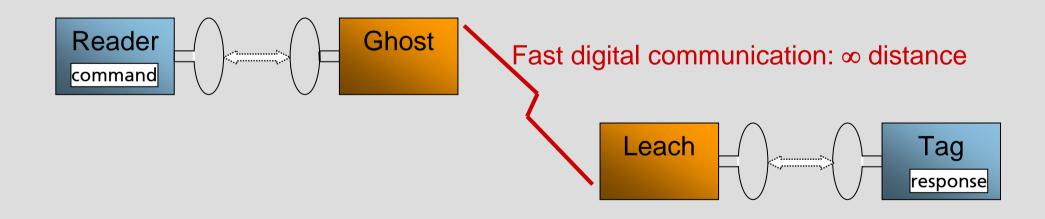
Attacks targeting the RF-Interface: Countermeasures

Giesecke & Devrient

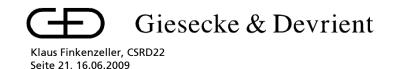
Seite 19, 16.06.2009

Part III: Using a tag without physical access → relay attacks

Klaus Finkenzeller, CSRD22 Seite 20, 16.06.2009

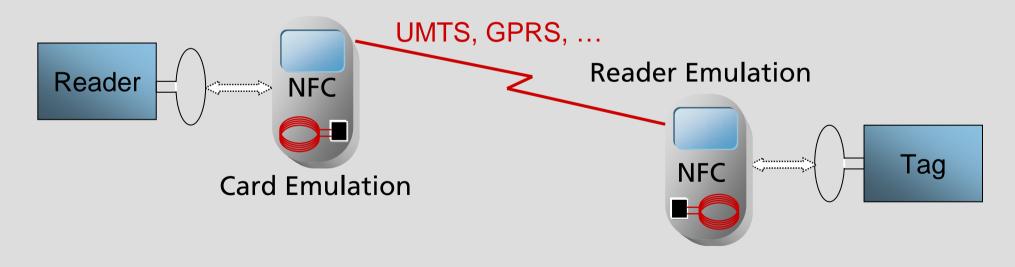

Relay attack

A Virtual Pick-Pocket System

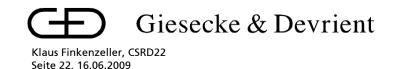

- Ghost is the device that FAKES a Tag to the Reader
- Leach is the device that FAKES a Reader to the Tag
- Ghost to Leach distance is unlimited

Virtual Pick-Pocket allows

- Charging someone else's credit card for a purchase.
- Opening a secure door using someone else's key.



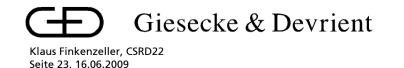
Relay attack


The real threat: relay attack using custom NFC phones

- Protocol stack implemented in mobile phone → No detection by timing
- Transfer only APDU via data link between mobile phones
- Easy to handle, easy to copy, only Java-applet needed

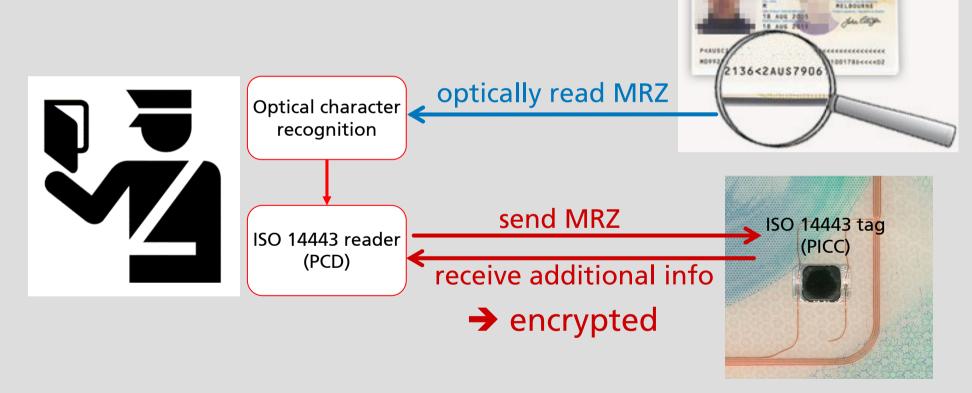
High Risk: Easy to install (download NFC applet from internet), NFC phones available for low budget, NFC becoming a mass product!

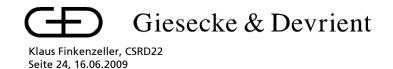
Countermeasures against relay attack:


Additional information required to "confirm a transaction":

- Press a button to confirm a required transaction (payment)
- "secret handshakes", using movement sensor

Basic Access Control (BAC) for electronic passports uses optical readable information from MRZ to derive an access key




Basic Access Control (BAC)

Protects against unauthorised access and eavesdropping. Some limitations:

entropy of the derived session key

#0992134

AUSTRALIAN

Standardisation Activities

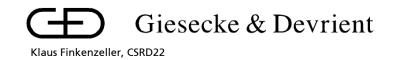
Going to implement an RFID-system?

→ Technical Recommendation (TR) and International Standards (IS) you should have a look at ...

Klaus Finkenzeller, CSRD22 Seite 25, 16.06.2009

Technical Guidelines regarding RFID

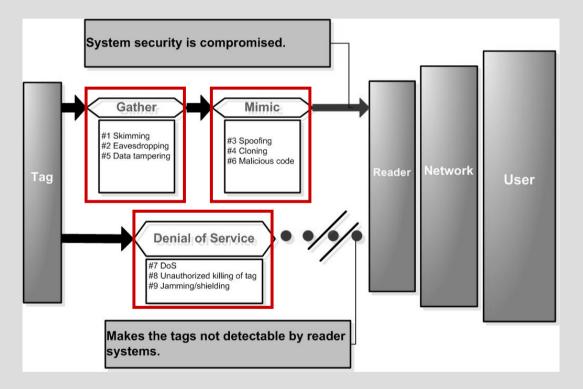
With the publication of Technical Guidelines BSI pursues the objective to spread appropriate ITsecurity standards. Technical Guidelines address all parties involved in the installation or safeguarding of IT-systems. They complement the technical test specifications of BSI and provide criteria and practices for conformity evaluations ensuring the interoperability of ITsecurity components as well as the implementation of defined IT-security requirements. http://www.bsi.de/literat/tr/tr03126/index.htm


Released:

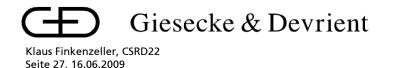
- TR 03126-1 "eTicketing im ÖPNV, (public transport), 181 pages
- TR 03126-2: "eTicketing für Veranstaltungen, (event ticketing), 186 pages

Under Development:

- TR 03126-3: "NFC-basiertes eTicketing" (NFC ticketing)
- TR 03126-4: "Handelslogistik" (supply chain)


Seite 26, 16.06.2009

RFID Security – ISO-IEC/JTC1/SC31/WG4

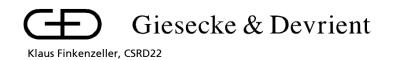

RFID for item management:

ISO/IEC TR 24729 – 4: RFID Implementation Guidelines – Tag data security

- Technical Report (TR)
- Based on ISO/IEC 18000-6C
- Provides guidance on potential threats to data security
- Threat scenarios and potential impact levels
- Provides Guidance on countermeasurements
- Looks at systemic solutions that prevent unauthorized access to data on an RFID tag.

RFID Security – ISO-IEC/JTC1/SC31/WG4

Under Development:


(Draft) ISO/IEC 24791-6: "RFIDfor item management – Software system infrastructure – Part 6: Security"

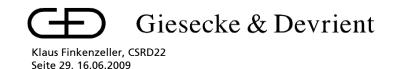
- Covers security issues for the RFID reader and back-end systems
- Will NOT cover the security issues in the air-interface between tag and reader

(Draft) ISO/IEC 29167: "Automatic identification and data capture techniques – Mobile item identification and management – Consumer privacy-protection protocol for Mobile RFID-Services"

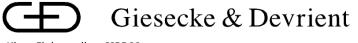
Conceal the original UII (unique item ID) and the original TID (tag ID)

Seite 28, 16.06.2009

RFID Security – ETSI


ETSI / TISPAN WG7: New Work Item on RFID Security and Privacy – January 2009

Scope of NWI

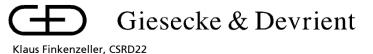

- Develop a standard (EN) for the enhanced privacy & security of RFID & RFID networks
- Supporting the Future Internet of Things (FIT)
- Reader and network side: personalization and traffic analysis shall be addressed
- Technical investigation into the possibilities for RFID related crime
 - Evaluating the capabilities of passive RFID technologies UHF, HF and LF beyond regulatory limits
 - RFID technology supply chain threats
 - RFID counterfeiting

Questions?

Klaus Finkenzeller, CSRD22 Seite 30, 16.06.2009

References

- [69 feet] DEFCON RFID World record attempt, 2005 <u>http://blog.makezine.com/archive/2005/07/_defcon_rfid_wo.html</u>
- [A. Juels] The Blocker Tag: Selective Blocking of RFID Tags for Consumer Privacy,


http://www.rsa.com/rsalabs/staff/bios/ajuels/publications/blocker/blocker.pdf

 [BSI-MARS] Studie "Messung der Abstrahleigenschaften von RFID-Systemen (MARS),

http://www.bsi.bund.de/fachthem/rfid/Mars Teilbericht 1Therorie.pdf

- [Kirschenbaum 2005] How to Build a Low-Cost, Extended-Range RFID Skimmer, Ilan Kirschenbaum, Avishai Wool
- [Westhues 2003] A Card Simulator <u>http://cq.cx/prox.pl</u>

Klaus Finkenzeller, CSRD2 Seite 31, 16.06.2009