
Secure UHF Tags with Strong Cryptography 
Development of ISO/IEC 18000-63 Compatible Secure RFID Tags 

and Presentation of First Results 

Walter Hinz, Klaus Finkenzeller and Martin Seysen 
Giesecke & Devrient GmbH, Prinzregentenstrasse 159, 81677 Munich, Germany 

{Walter.Hinz, Klaus.Finkenzeller, Martin.Seysen}@gi-de.com 

Keywords: UHF Tag, Public Key Cryptosystem, Rabin, Montgomery 

Abstract: This paper presents a concept for an UHF tag supporting cryptographically strong authentication which is 

based on the Rabin-Montgomery public key cryptosystem in accordance with the framework of ISO/IEC 

29167-1. It uses an easily computable long integer square operation for the public key encryption of a tag ID 

record. Only a legitimate interrogator who is in possession of the private key can decrypt this message and 

retrieve the authentic tag ID. A working prototype based on a standard FPGA is shown which demonstrates 

the feasibility of the proposed cryptographic function. 

1 INTRODUCTION 

Backscatter-coupled RFID systems are being used in 

a large number of applications such as logistics, 

supply chain, warehouse management, retail stores, 

and similar applications. 

Backscatter-coupled RFID systems are mainly 

operated in the UHF frequency ranges 868 MHz 

(Europe) and 915 MHz (USA, Asia). These UHF-

RFID Systems are primarily covered by the standard 

(ISO/IEC 18000-6, 2010). 

The majority of the applications mentioned 

above operate according to ISO/IEC 18000-6 

Type_C (ISO/IEC 18000-6C will be published as 

Part -63 in the future (ISO/IEC FDIS 18000-63)) 

which describes the physical characteristics and pro-

tocol behaviour of the so called “Electronic Product 

Code”, the EPC. This standard is designed for the 

fast detection of huge numbers of transponders in 

the field at the same time, and for a small amount of 

data to be transferred between an interrogator and a 

tag. 

A typical transponder is field-powered and uses 

modulated backscatter signals to transmit data back 

to the interrogator. The operating range of these pas-

sive (or field-powered) transponders is mainly lim-

ited by the ability to get sufficient power from the 

field into the transponder in order to operate the sili-

con chip. Typical maximum operating distances of 

such passive transponders are between 3 and 10 m.  

 

Figure 1: Principle of UHF RFID. 

Another class of transponder uses an on-board 

battery to supply the silicon chip with energy. The 

operating range of these battery assisted passive 

(BAP) tags is mainly limited by the interrogator’s 

ability to receive and detect the modulated backscat-

ter signal from the transponder, in addition to its 

own high-power signal. Typical maximum operating 

distances of BAP transponders are up to 25 m. 

Despite of these range limitations, there are real 

time locating systems (RTLS), which are able to 

detect a locally powered transponder from a distance 

of 100 m and above. These systems are much more 

sensitive than RFID readers, because they do not 

suffer from the strong signal carrier emitted at the 

same antenna, as an interrogator does. 

With special equipment like communication re-

ceivers and high gain directional antennas, there is 

always the possibility to eavesdrop a communication 

between an UHF-RFID interrogator and a trans-

ponder from a considerable distance up to several 

hundreds of meters. 



 

In many cases it is not desirable that an object or 

subject carrying an RFID tag can be identified or 

tracked, either with a standard RFID interrogator or 

by eavesdropping the communication between the 

tag and an interrogator. For example, whenever the 

tag is associated with a person, privacy rules apply. 

Furthermore, it could be possible to transmit strong 

backscatter signals with forged information which 

superimpose the original data sent by the tag. 

Therefore, it is desirable to have a secure variant 

of RFID, where cryptographic functions allow only 

a legitimate interrogator to identify a tag, to impede 

eavesdropping and to prevent the infiltration of false 

information. 

 

Figure 2: Technology leap with Secure UHF. 

For inductively coupled RFID devices, mainly 

operated in the 13.56 MHz RF frequency range, 

cryptographic functions and even complex smart 

card operating systems (SCOS) are available for 

nearly one and a half decades now. Inductively cou-

pled RFID devices however are operated close to the 

reader, typically at a distance of up to 10 cm. Due to 

the strong coupling between the reader and the tag’s 

antenna inductive RFID systems have sufficient 

power to operate complex microprocessors even 

with cryptographic co-processors. UHF RFID tags 

on the other hand have to be operated with about 10 

to 100 times less power. Therefore, UHF RFID tags 

in the past provided no cryptographic security at all 

(Finkenzeller, 2012).  

Over the years however, silicon technology con-

tinuously improved, resulting in ever-decreasing 

power consumption. In the recent years a point has 

been reached, where cryptographic functions on 

UHF RFID tags seem to become feasible. For that 

reason, ISO/IEC JTC1/SC31 has recently started 

standardisation activities to provide crypto suites for 

future UHF RFID tags. The results will be published 

in a new standard series ISO/IEC 29167 with differ-

ent parts, which are currently available in first work-

ing drafts (WD). 

In the remainder of this paper a concept for a se-

cure UHF tag with strong cryptography will be pre-

sented in section 2. As the required protocol exten-

sion is not yet available, a first prototype working 

with currently defined standards, and first results are 

shown in sections 3 and 4. 

It is paramount that the secure RFID tag shall be 

fully compatible with ISO/IEC 18000-6, such that 

interrogators conforming to this standard can be con-

tinued to be used. The proposed protocol is designed 

along the command structure which is currently be-

ing discussed in the context of security suites in 

ISO/IEC WD 29167. 

Especially because suitable interrogators are not 

yet available, a preliminary workaround protocol 

had to be used to achieve first results.  

2 PROTOCOL CONCEPT FOR A 

SECURE RFID TAG 

2.1 General Concept 

In accordance with WD 29167-1 we developed a 

secure protocol for authentication and identification 

of a tag by use of the Authenticate command as de-

fined in the working draft. Within this framework 

we defined a specific format for the payload field. In 

the following the content of this payload is ex-

plained. 

The authentication protocol comprises the en-

cryption of a message by the tag containing the tag’s 

identification information. In order to guarantee the 

freshness of the encrypted message, random num-

bers originating both from the interrogator and the 

tag are also included. Because the confidentiality of 

a key stored in the tag cannot be assured, it is neces-

sary to employ a public key cryptosystem with the 

public key stored in the tag(s) and the private key on 

the interrogator side. 

In the following, the particular cryptosystem and 

the format of the plaintext message is explained. In 

the context of public key cryptosystems the message 

is considered as a long integer number M, which 

constitutes the payload field as defined in WD 

29167-1. 



 

2.2 The Rabin Cryptosystem 

For the authentication part we used the Rabin public 

key cryptosystem which is based on the modular 

multiplication of long integers (Rabin, 1979). A step 

by step explanation of the algorithm can be found in 

(Menezes et al., 1997). 

A proof that breaking a particular encryption 

scheme is as difficult as solving a computational 

problem which is believed to be difficult, is a desir-

able property. The Rabin public key encryption 

scheme was the first example of provable security, 

because the problem of breaking it is computation-

ally equivalent to factoring. 

In order to generate a public key and the corre-

sponding private key, two random and distinct 

primes p and q of roughly the same size need to be 

generated. To keep the decryption algorithm simple, 

we assume that these primes satisfy the congruence 

condition 

3≡≡ qp  )4(mod  (1) 

Here p and q together constitute the private key 

while the product 
qpn ⋅=

 (2) 

is the public key. 

The plaintexts in the Rabin encryption scheme 

are the integers 0 <  M < n. The ciphertext C corre-

sponding to M is defined as the square of the long 

number M modulo n 

nMC mod2
=  (3) 

Rabin decryption thus means taking the modular 

square root of cipher text C, 

nCM mod=  
(4) 

In the general case there is no efficient algorithm 

to find M. For a modulus n = p q, with p and q 

prime, the following roots can be determined: 

pCmp mod=  (5) 

qCmq mod=  (6) 

By virtue of the congruence condition (1) the two 

roots are given by 

pCm

p

p mod4

1+

±=  (7) 

qCm

q

q mod4

1+

±=  (8) 

By means of the extended Euclidian algorithm it 

is possible to determine integers yp and yq which 

satisfy the equation 

1=⋅+⋅ qypy qp  (9) 

Finally four roots of C, namely +r, -r, +s, and -s, 

can be calculated by application of the Chinese Re-

mainder Theorem as  

nmqympyr pqqp mod)( ⋅⋅+⋅⋅=+  (10) 

rnr −=−  (11) 

nmqympys pqqp mod)( ⋅⋅−⋅⋅=+  (12) 

sns −=−  (13) 

Which one of the four roots (±r, ±s) is the de-

sired clear text message M has to be determined by 

searching for a specific characteristic, such as an 

embedded checksum or other redundant information. 

2.3 Montgomery Multiplication 

Modular reduction as in equation (3) is usually quite 

cumbersome to calculate for a microprocessor with 

low capabilities, because of the division involved. 

The paper (Montgomery, 1985) proposes an alterna-

tive computation scheme which requires only multi-

plication. The cost of multiplication is much less 

than that of division, especially if a hardware multi-

plier is available. 

Consider a residue R where R is a power of 2 

and an odd modulus Rn
k

≤< 2 . In other words, R 

a power of 2 which is larger than n. Usually k is a 

multiple of the word size w of the processor per-

forming the hardware multiplication. For a suitable 

R one calculates 

nRMC mod12* −
=  (14) 

Without the cost for squaring M, the quantity C
*
 

can be computed with (k/w)
2
 + O(k/w) multiplica-

tions of w-bit numbers, and without any divisions, 
see (Montgomery, 1985) for details. Squaring M 
costs 0.5(k/w)

2
 + O(k/w) more multiplications, so 

that in total we need 1.5(k/w)
2
 + O(k/w) multiplica-

tions of w-bit numbers. 
One should be aware that C*≠ C, and before we 

can proceed with calculating the roots, we have to 
undo the effect of the Montgomery multiplication 

nRRMnRCC mod)(mod 12* −
==  (15) 

The final calculation needs, apart from approxi-
mately the double length operands, just one conven-
tional modular reduction, but this is made on the 
host system connected to the interrogator where 
computing power and space requirements should not 
pose any problem. 

If the modulus n is chosen to satisfy the condi-
tion 

)2(mod1 2/kn =  (16) 

which means that about one half of the least signifi-

cant bits of n (except for the last one) are zeroes, 



 

about one third of the necessary multiplications to 

evaluate equation (14) can be saved.  

Unlike modular reduction the Montgomery mul-
tiplication method does not guarantee that the result 
in equation (14) is actually smaller than the modulus 
n, therefore a final reduction step may be necessary 
which causes high computational load and leaks side 
channel information due to different timing with and 
without reduction. The probability for a modulus 
overflow in equation (14) can be significantly re-
duced by choosing the residual exponent k a bit lar-
ger than actually required. In practical terms one 
selects the exponent as k ≈ log2 n + d where d is a 
security parameter, so that k is a multiple of the tag 
microprocessor hardware multiplier’s word length. 

In our example we chose n = 1024 and d = 64 for 
a 16×16 multiplier unit, giving k = 1088 and R = 2

k
. 

2.4 The Identification Message 

The most important part of the identification mes-

sage is the unique tag ID. In order to preserve its 

authenticity it is digitally signed before it is person-

alised into the tag during production. The signature 

method is out of scope for these considerations; 

however, for practical purposes one would choose 

an appropriate Elliptic Curve Cryptosystem (ECC), 

because the size has to fit into the tag authentication 

message. 
With the parameters chosen, the authentication 

message has a size of 128 bytes. To resolve the am-
biguity of the four possible square roots two bytes 
are reserved for a checksum and the most significant 
byte must contain 0x00. Only the root with the cor-
rect checksum will be processed by the interrogator. 
This leaves 125 bytes for the actual ID content. 

As discussed earlier we need some random bytes 
to guarantee the freshness of the encrypted ID mes-
sage and to prevent the recycling of an eavesdropped 
ID record. We chose 10 random bytes to be contrib-
uted by the interrogator and another 10 bytes con-
tributed by the tag. 

After these considerations 105 bytes remain for 
the ID information. To gain flexibility in the size of 
the individual elements of the signed tag ID these 
are TLV (tag-length-value) encoded. If the ID in-

formation does not fill the whole space available, the 
tag will insert the necessary amount of fresh random 
data in order to provide the required total of 128 
bytes. 

Figure 3 shows the composition of the identifica-
tion message described so far. If we used this ID 
message for encryption there would be some risk of 
leaking information, because to a large extent (the n 
bytes signed tag ID) these data are static. The intro-
duction of a MIX function neutralises this problem, 
because it interleaves static and dynamic compo-
nents. 

The following C-like pseudo code describes the 
operation of the MIX function: 

for (i=0;;++i) { 
  get 5 bytes from signed ID; if out 
      of data, get random bytes; 
  if (i == 10) break; 
  get 1 byte from reader challenge; 
  get 5 bytes from signed ID; if out 
      of data, get random bytes; 
  get 1 byte random as tag challenge; 
} 
append checksum; 
append 0x00; 

2.5 Overall Message Flow 

The overall message flow for a secure tag authenti-

cation is as follows: 

First the interrogator generates a 10 byte random 
challenge and sends it to the tag. 

Then the tag processes the identification record 
as described above, mixing the interrogator chal-
lenge into the message and encrypting it according 
to the Ramon-Montgomery scheme. The result is 
backscattered to the tag. 

The interrogator has to decrypt the message and 
find the correct root out of the four presented by the 
algorithm. Then it has to roll back the effects of the 
MIX function and check whether the returned inter-
rogator challenge is identical to the one sent. This 
approves that the tag is in possession of the public 
key. 

Afterwards the interrogator investigates the 
signed ID record. If the signature can be verified 
with the public ECC key, the tag is identified and 
authenticated. The tag challenge can be preserved 

 

Figure 3: Identification message (before MIX). 



 

for further processing, as it can authenticate the in-
terrogator to the tag. 

2.5.1 Tag State Diagram 

The logical process flow as developed above is 

now embedded into the framework as defined in 

WD 29167-1. In accordance with the working draft 

the tag can assume the states as depicted in figure 4. 

A sequence of Authenticate commands needs to 

be sent to the tag to complete a full tag authentica-

tion protocol. For a successful authentication the 

entire sequence needs to be executed successfully. 

The crypto suite state transitions triggered by the 

authentication payloads are summarized in the next 

subsection below. State transitions and tag responses 

are according to the payloads of the Authenticate 

command sent by the interrogator. 

The processing of the Authenticate command 

may include generation of an authentication crypto-

gram that will be returned in the tag’s response; the 

tag may also return some buffered data. Because the 

authentication protocol produces the output data 

consecutively in the correct order, it is advantageous 

to split the response in small pieces and to return 

these pieces in parallel to the ongoing calculation.  

After power-up the tag transitions to the ‘Init’ 

state. Once the tag receives an Authenticate com-

mand with payload for step 1, it processes the com-

mand, sends the response and transitions to TAM1.1 

expecting an Authenticate command with payload 

for step 2. When the tag receives the first Authenti-

cate command for step 2, it processes the command, 

sends the response and remains in TAM1.2 as long 

as there are authentication data bytes remaining to 

be sent. In TAM1.2 the interrogator sends as many 

Authenticate commands as required to fetch the 

entire authentication data produced by the tag. 

The interrogator indicates the length of the au-

thentication cryptogram in the payload of the Au-

thenticate command for step 1. The tag indicates the 

number of bytes still available to fetch in the pay-

load of the response message. 

Whenever the tag receives an Authenticate 

command with payload for step 1, it resets all vari-

ables, transitions to TAM1.1 and starts processing 

the command. The tag transitions to Init state once it 

has sent out the last fragment of authentication cryp-

togram. 

In case of failure during one of the steps of the 

protocol, the crypto suite transitions to the ‘Init’ 

state. 

When Rabin-Montgomery encryption and I/O 

are overlapping in the tag there can be a couple of 

short response packets from the tag, the exact behav-

iour being dependent on tag firmware optimization. 

In any case, the final packet carries a success status 

word in its payload or an error indicator, if applica-

ble. 

2.5.2 Tag Authentication 

The sequence of exchanged messages for tag authen-

tication is depicted in figure 5. The first message 

includes a random challenge generated by the inter-

rogator and sent to the tag. The tag response is an 

encrypted message that only the legitimate interro-

gator can decrypt, since it possesses the necessary 

private key. 

 

In Step 1, the interrogator challenge is delivered 

to the tag. This message is used to request the tag to 

perform authentication. The response to this mes-

sage returns only the number of bytes to expect. In 

Step 2, the interrogator retrieves the data fragments 

by chaining further Authenticate commands and 

responses. Once the interrogator has fetched the en-

 

Figure 4: Tag state diagram. 

 

Figure 5: Message exchange for tag authentication.  



 

tire authentication record it is able to authenticate 

the tag. 

If the tag receives a message that is not formatted 

as described in the following section it shall respond 

with an error code and transition to ‘Init’ state. 

2.5.3 Authentication Command 

The authentication is performed in two distinct 

steps. In step 1 of the Authenticate command the 

interrogator sends a 10 byte random challenge to the 

tag as indicated in the specification of the cipher. 

As the tag cannot process the authentication 

within the response timeout, it answers with a mes-

sage indicating the expected size of the Ramon-

Montgomery encrypted cipher test. The tag assumes 

state TAM1.1 and begins the calculation of the ci-

pher. 

In order to fetch the result, the interrogator issues 

step 2 of the Authenticate command after some 

time. The tag assumes state TAM1.2 and responds 

with the first fragment of the resulting message, to-

gether with an indication of the number of bytes 

missing. The size of the fragment returned is deter-

mined by the progress of message calculation and 

the maximum which can be transferred in a single 

message. 

If there are message bytes remaining in the tag, 

the interrogator waits a while and then repeats Au-

thenticate for step 2 until the response from the tag 

indicates that the message is complete and that no 

more data is available from the tag. Now the interro-

gator begins with message processing. 

2.6 Tag Life Cycle and Key Manage-

ment 

We will now briefly discuss aspects of the tag’s life 

cycle, the key management, and the roles involved. 

In figure 6 we can see the System Integrator and the 

Tag Issuer shown as different roles. In this scenario 

the System Integrator owns the asymmetric key pair 

KE, KD (the RAMON encryption and decryption 

keys), marked with blue and red colour, respectively 

(in b/w print these keys show up as grey and dark 

grey). The System Integrator hands over the public 

key KE to the Tag Issuer. 

Now the Tag Issuer produces a couple of tags 
with uniquely generated tag IDs and signs them with 
its private signature key KS. The signature key pair 
is marked with light yellow colour (or light grey). 
Note that the generation of tag ID signatures is op-
tional. In each tag the Tag Issuer stores the (signed) 
tag ID and the Ramon encryption key KE. No secret 
key needs to be stored in the tag. 

In addition the Tag Issuer gives the signature 
verification key KV and a list of (signed) tag IDs to 
the System Integrator. Now the System Integrator 
can verify the authenticity of this ID list. 

The System Integrator sets up Interrogator sites 
with a secure store containing the tag IDs and the 
private RAMON decryption key KD. Thus the Inter-
rogator can decrypt the RAMON messages, identify 
the tag and eventually authenticate it if the signature 
matches.  

 

Figure 6: Tag Life Cycle and Key Management 



 

3 PRELIMINARY PROTOTYPE 

The authentication protocol specified so far requires 

modified tags which support the secure authentica-

tion procedure, but it also requires UHF interroga-

tors which implement the Authenticate command 

that is still in the standardisation process. However, 

such an interrogator is currently not available. 

For that reason it is necessary to emulate the be-
haviour of the secure UHF tag on hardware which is 
compatible with the current ISO/IEC 18000-6 Type 
C standard and use commands which are available in 
this standard. 

In order to achieve maximum flexibility in the 
implementation of cryptographic functions we de-
cided to extend a standard state machine controlled 
UHF tag with a microprocessor. Both units are 
closely coupled with shared volatile memory which 
permits the microcontroller to receive messages via 
the UHF channel and to return responses. 

3.1 Hardware Description 

In order to provide a smooth migration path we 

started with an already existing standard UHF tag. 

This device, when mounted on a PCB, can commu-

nicate its digital data stream to an external device 

and can backscatter the data received from that de-

vice. Thus the function of the former UHF tag is 

reduced to an analogue front end (AFE). 

The switch from autonomous mode of the tag to 

AFE mode is made by means of a command se-

quence sent to the tag’s state machine from the at-

tached device via an I²C bus specially provided for 

that purpose. 

The attached device is represented by a Spartan 6 

FPGA which is located on a suitable evaluation 

board where the connections to the external world 

are provided. The whole setup is shown in figure 7. 

Within the FPGA the state machine for an 

ISO/IEC 18000-6 Type C compliant tag is repli-

cated, but with some modifications which facilitate 

the implementation of the secure functions presented 

in this paper 

In the FPGA prototype all memory is provided as 

non-persistent RAM. 

3.2 Add-ons for Security Functions 

The additional processing elements represented in 

the FPGA comprise a Texas Instruments MSP430X 

compatible CPU together with a couple of peripher-

als which are also compatible with the original pe-

ripherals to some extent. The most important one of 

these peripherals for our purpose is a hardware mul-

tiplier capable of calculating a 32 bit result of a 

16×16 bit integer multiplication within one clock 

cycle. By using the multiply-add mode of this multi-

plication unit it is possible to implement the long 

integer arithmetic functions required for Public Key 

cryptography in a very efficient way. 
Another valuable peripheral for strong cryptog-

raphy is an AES coprocessor capable of supporting 
all the three standardised key sizes, i.e. 128, 129, 
and 256 bits. 

Other peripherals comprise a timer and a couple 

 

Figure 7: FPGA board and analogue front end. 



 

of free programmable port bits. One of these bits is 
used to generate serial output which can be dis-
played in a terminal window on the controlling PC. 

The microprocessor itself is controlled through a 
special USB-to-I²C interface from a debugger run-
ning on the PC. 

The MSP430X currently runs at a clock rate of 
1,25 MHz which is significantly below the maxi-
mum speed for this processor architecture. The 
speed was chosen to achieve command execution 
performance close to that when a final tag design has 
to operate in a power-limited environment. 

3.3 Tag-CPU Communication 

The tag (i.e. the part within the FPGA which is 

based on the ISO/IEC 18000-6 Type C state ma-

chine) and the CPU are loosely coupled by means of 

a common memory buffer of 128 16-bit words 

which is within the address space of the tag’s state 

machine. Specifically, it is located within the TID 

(tag ID) memory bank. 
The CPU can access (read and write) all the tag 

memory by means of a special peripheral memory 
access controller which also solves the task of arbi-
tration in case of conflicting access attempts. The 
access rules are simple: 
� After the CPU posted a request for a specific 

address, it has to wait for an interrupt which 

signals the access grant. 

� If the tag tries to access the memory while the 

CPU has access, it is delayed until the CPU is 

done. This may sometimes lead to a timeout 

on the tag’s air interface. 

� In all other cases the tag state machine and the 

CPU may run independently. 
Whenever the tag writes to a specific address 

into the TID bank, a specific interrupt is generated 
for the CPU to signal that a command message was 
received over the air interface. This mechanism fa-
cilitates the CPU to stay in a power-save sleep state 
most of the time until it has to respond to an external 
request. 

3.4 Over the Air Data Transfer 

As we saw above any data from outside the CPU has 

to be passed across the communication buffer in the 

TID bank. The ISO/IEC 18000-6 Type C standard 

defines (sometimes optional) commands to serve 

this purpose. 

� For reading data from the communication 

buffer the Read and BlockRead commands 

are available. The first reads a single 16 bit 

word from a specific address while the latter 

transfers a specified number of such words 

from adjacent locations. 

� For writing data from outside into the com-

munication buffer the commands Write and 

BlockWrite are provided in the standard. 

There is an issue with BlockWrite though: as any 
ISO/IEC 18000-6 Type C command has to be com-
pleted within 20 ms, this may be too short for writ-
ing to an extended number of E²PROM cells within 
a single command. As standard tags normally use 
this memory type, they often do not support Block-
Write, or only with a length of just a single word. 
This situation is completely different for a RAM 
buffer. 

Our prototype is currently confined to use 
BlockRead for reading from the tag and repeated 
Write for writing to the tag. 

3.5 The Transport Protocol 

In the proposed preliminary setup any messages be-

tween the interrogator and the tag’s CPU have to be 

passed through the shared memory. In order to fa-

cilitate this transfer the transport protocol T=1 which 

is widely used in the smart card environment was 

chosen. 
Although this protocol introduces some over-

head, it provides a couple of useful features, like 
consistency checking with repetition of messages if 
necessary, buffer size negotiation, chaining of long 
messages, and others. 

3.6 The Application Protocol 

The application protocol layer is also taken from the 

smart card domain as specified in ISO/IEC 7816. In 

this standard an application protocol data unit 

(APDU) comprises a class byte, an instruction byte, 

two parameter bytes, an optional length specification 

followed by the indicated number of data bytes, and 

eventually an optional specification of the expected 

response size. This makes up a command message. 

Response messages comprise the response data, 
if any, followed by a two-byte status word. 

In the ISO/IEC 7816 paradigm the smart card or 
secure token or, in our case, the secure UHF tag al-
ways takes the role of a server while the interroga-
tor, or rather the device which controls the interroga-
tor, takes the role of a client. Thus, during a message 
sequence, the secure UHF tag receives a command 
APDU, processes the command, and eventually re-
turns a response APDU. 



 

3.7 Secure Messaging 

Within the authentication method as proposed for 

WD 29167-1 in a previous section, the confidential 

and authentic exchange of arbitrary data is not en-

visaged. 

However, in some applications it is desirable to 
communicate in a secure manner which is known as 
secure messaging. Basically there are two stages of 
secure messaging which can be applied separately or 
combined. 

� Message Authentication: this ensures the in-

tegrity of a message, No one other than the 

originator can generate or alter such a message 

after a message authentication code (“MAC”) 

is attached to the message, nor can the origina-

tor deny his authorship. The MAC is calcu-

lated over that part of the message which is to 

be secured. 

� Message Encryption; this ensures the confi-

dentiality of a message. Only the originator 

and the receiver of the message can see its 

clear content. 
As mentioned, both security mechanisms can be 

combined. In that case the state of the art requires 
applying the encryption first and message authenti-
cation afterwards. 

For both security mechanisms a number of cryp-
tographic algorithms are available. In our prototype 
we used AES-CBC-128 for the encryption and AES-
CMAC- 128 for message authentication. This choice 
was based on the availability of coprocessor support 
for the AES crypto-primitive. 

4 RESULTS 

With the FPGA setup we were able to execute a se-

cure authentication test suite comprising a Rabin-

Montgomery authentication of the tag, followed by 

an AES based mutual authentication, writing a data 

record with secure messaging (encrypted and au-

thenticated), and then securely reading back the data 

just written. 
With the microprocessor running at a clock rate 

of 1.25 MHz we obtained satisfactory results. 
Thanks to the integrated multiplication unit the 
Rabin-Montgomery authentication with a modulus 
of 1024 bit size was performed within 134 ms. This 
does not include the time required to transmit the 
result to the interrogator which takes more than 
330 ms. The buffer determines if the components 
involved require the authentication message to be 
split into at least two fragments, which adds to the 
communication times. However, we do not expect to 

have buffers big enough to transfer the whole mes-
sage within a single block. 

The performance of the secure messaging tests 
was less satisfactory. This was due to the fact that a 
BlockWrite command with sufficient data length 
was neither supported by our AFE nor by the UHF 
reader firmware. Therefore, we had to fall back to an 
appropriate number of Write commands which im-
posed a considerable time overhead. Thanks to the 
AES coprocessor, the AES-based encryptions were 
calculated with considerable performance as ex-
pected,. However, overall execution times were 
dominated by the communication. 

5 CONCLUSIONS 

As we expect the standardisation to take some time 

we will continue to experiment with setups based on 

the shared memory approach taken with the FPGA.  

For further evaluations and estimations on power 

consumption and operating range the FPGA should 

be replaced with an ASIC implementing basically 

the same functionality. 
After the completion of ISO/IEC WD 29167 as a 

standard and the availability of compatible readers 
we will continue to implement this technology in 
order to enhance the performance of secure UHF 
tags. 

REFERENCES  

Finkenzeller, Klaus, 2012: RFID Handbuch (RFID 

Handbook), Hanser Verlag, Munich, 6th edition, ISBN 

978-3446429925, http://rfid-handbook.de  

ISO/IEC 18000-6, 2010: Information technology - Radio 

frequency identification for item management - Part 6: 

Parameters for air interface communications at 860 

MHz to 960 MHz, International Organization for 

Standardization, Geneva, Switzerland 

ISO/IEC FDIS 18000-63, 2012: Information technology - 

Radio frequency identification for item management - 

Part 63: Parameters for air interface communications 

at 860 MHz to 960 MHz Type C, International Or-

ganization for Standardization, Geneva, Switzerland. 

Mendezes, Alfred J., van Oorschot, Paul C., Vanstone, 
Scott A., 1997: Handbook of Applied Cryptography, 

CRC Press, Inc., NewYork, ISBN 0-8493-8523-7. 

Montgomery, Peter L: 1985. Modular Multiplication 

without Trial Division. In Math. Computation, Vol. 44, 

1985, p. 519–521. 

Rabin, Michael O., 1979: Digitalized Signatures and 

Public-Key Functions as Intractable as Factorization. 

In MIT-LCS-TR 212, MIT Laboratory for Computer 

Science, January 1979. 

 


